Catalytic dechlorination of diclofenac by biogenic palladium in a microbial electrolysis cell

نویسندگان

  • Bart De Gusseme
  • Maarten Soetaert
  • Tom Hennebel
  • Lynn Vanhaecke
  • Nico Boon
  • Willy Verstraete
چکیده

Diclofenac is one of the most commonly detected pharmaceuticals in wastewater treatment plant (WWTP) effluents and the receiving water bodies. In this study, biogenic Pd nanoparticles ('bio-Pd') were successfully applied in a microbial electrolysis cell (MEC) for the catalytic reduction of diclofenac. Hydrogen gas was produced in the cathodic compartment, and consumed as a hydrogen donor by the bio-Pd on the graphite electrodes. In this way, complete dechlorination of 1 mg diclofenac l(-1) was achieved during batch recirculation experiments, whereas no significant removal was observed in the absence of the biocatalyst. The complete dechlorination of diclofenac was demonstrated by the concomitant production of 2-anilinophenylacetate (APA). Through the addition of -0.8 V to the circuit, continuous and complete removal of diclofenac was achieved in synthetic medium at a minimal HRT of 2 h. Continuous treatment of hospital WWTP effluent containing 1.28 µg diclofenac l(-1) resulted in a lower removal efficiency of 57%, which can probably be attributed to the affinity of other environmental constituents for the bio-Pd catalyst. Nevertheless, reductive catalysis coupled to sustainable hydrogen production in a MEC offers potential to lower the release of micropollutants from point-sources such as hospital WWTPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dehalogenation of trichloroethylene in microbial electrolysis cells with biogenic palladium nanoparticles.

Nanopalladium catalysts can be synthesized by the precipitation of palladium (Pd) on the surface of bacteria leading to the production of biogenic Pd nanoparticles (bio-Pd). For example, Shewanella oneidensis can reduce Pd(II) and subsequently precipitate it as Pd(0) nanocrystals on their cell wall and in their periplasmic space when a hydrogen donor is provided (De Windt et al., 2005). No expe...

متن کامل

Modeling of Multi-population Microbial Fuel and Electrolysis Cells Based on the Bioanode Potential Conditions

Microbial fuel cell and microbial electrolysis cell are two major types of microbial electrochemical cells. In the present study, we governed modeling of these systems by concentrating on the simulation of bioelectrochemical reactions in both biofilm and anolyte and considering the effect of pH on the microbial growth. The simulation of microbial fuel and electrolysis cells can be described by ...

متن کامل

Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls.

Microbial reduction of soluble Pd(II) by cells of Shewanella oneidensis MR-1 and of an autoaggregating mutant (COAG) resulted in precipitation of palladium Pd(0) nanoparticles on the cell wall and inside the periplasmic space (bioPd). As a result of biosorption and subsequent bioreduction of Pd(II) with H2, formate, lactate, pyruvate or ethanol as electron donors, recoveries higher than 90% of ...

متن کامل

The significance of key operational variables to the enhancement of hydrogen production in a single-chamber microbial electrolysis cell (MEC)

Microbial electrolysis cell (MEC) is one of the promising and cutting-edge technologies for generating hydrogen from wastewater through biodegradation of organic waste by exoelectrogenic microbes. In the MECs, the operational parameters, such as applied voltage (Eap), anode surface area, anode-cathode distance, and N2/CO2 volume ratio have a significant impact on the hydrogen yield and producti...

متن کامل

Palladium nanoparticles supported on carbon black powder as an effective anodic catalyst for application in a direct glucose alkaline fuel cell

Palladium nanoparticles supported on carbon black powder (Vulcan XC-72) nanocomposite (Pd/C) are synthesized as the catalyst for the anodic oxidation of glucose for use in a direct glucose alkaline fuel cell (DGAFC). Characterization of the catalyst is carried out using physical and electrochemical methods. It is observed that Palladium nanoparticles are uniformly dispersed onto the carbon blac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012